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Motivation and Research Question

How to valuate and price energy storage in electricity markets?

How does energy storage impact the marginal electricity price?

Does energy storage create any intertemporal correlation in marginal
electricity prices?

What is the monetary value of energy stored in energy storage?

How does market-based and non-market operation of ES impact
marginal prices?

How does the energy storage charging/discharging offers/bids in
market impact prices?
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Continuous-time Unit Commitment Model

Assume ∆t → 0, so the set of K generating units are modeled by:
– Continuous-time generation trajectories: G(t)=(G1(t), . . . ,GK (t))T

– Continuous-time commitment variables: I(t)=(I1(t), . . . , IK (t))T

– Continuous-time ramping trajectories: Ġ(t)=(Ġ1(t), . . . ,ĠK (t))T ,

Ġk(t) ,
dGk(t)

dt

Cost function of generation and ramping: Ck(Gk(t), Ġk(t), Ik(t))

Continuous-time Unit Commitment → a variational problem1:

min
G(t),I(t)

∫
T
C
(
G(t), Ġ(t), I(t)

)
dt

s.t. 1TG(t) = D(t), (λ(t)), t ∈ T
h
(
G(t), Ġ(t), I(t)

)
≤ 0, (γ(t)), t ∈ T

1
M. Parvania, R. Khatami, “Continuous-time Marginal Pricing of Electricity,” IEEE Transactions on Power Systems, vol.

32, no. 3, pp. 1960-1969, 2017.
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G(t), Ġ(t), I(t)

)
dt

s.t. 1TG(t) = D(t), (λ(t)), t ∈ T
h
(
G(t), Ġ(t), I(t)

)
≤ 0, (γ(t)), t ∈ T

1
M. Parvania, R. Khatami, “Continuous-time Marginal Pricing of Electricity,” IEEE Transactions on Power Systems, vol.

32, no. 3, pp. 1960-1969, 2017.

c© 2018 M. Parvania, and the University of Utah Scheduling and Pricing of Energy Storage 4 / 20



Continuous-time Modeling of Energy Storage Operation

Power GridStored 
Energy

Generic Energy Storage Device

Energy 
Conversion 

System

( )sD t

( )sG t

( )sE t

1
( )s

d

G t
η

( )s
cη D t

ES Differential State Equation: dE s(t)
dt = ηcDs(t)− ηd−1

G s(t), t ∈ T

Charging Ramping Trajectories: dG s(t)
dt = Ġ s(t)

Discharging Ramping Trajectories: dDs(t)
dt = Ḋs(t)

Charging Utility Function: US
(
Ds(t), Ḋs(t)

)
Discharging Cost Function: CS

(
G s(t), Ġ s(t)

)
c© 2018 M. Parvania, and the University of Utah Scheduling and Pricing of Energy Storage 5 / 20



Continuous-time Co-Optimization of Energy Generation
and Storage

min
Ġ(t),Ġs(t),Ḋs(t)

∫
T
CG
(
G(t), I(t)

)
dt +

∫
T
CS
(
Gs(t)

)
dt −

∫
T
US
(
Ds(t)

)
dt,

s.t.
dEs(t)

dt
= ηcDs(t)− ηd−1

Gs(t), t ∈ T ,
(
γs,E (t)

)
,

1TKG(t)+1TRG
s(t)=D(t)+1TRD

s(t), t ∈ T , (λ(t)) ,

h
(
G(t), I(t),Gs(t),Ds(t)

)
≤ 0, t ∈ T , (γ(t))

f
(
Ġ(t), Ġs(t), Ḋs(t)

)
≤ 0, t ∈ T , (µ(t))

G(0)=G0,Gs(0)=Gs,0,Ds(0)=Ds,0,Es(0)=Es,0.
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Continuous-time Marginal Price of Generation and Storage

Theorem (Continuous-time Marginal Price)

Consider the optimal control problem of co-optimizing energy generation
and storage. For any optimal solution of the problem, the optimal
Lagrange multiplier trajectory λ(t) associated with the continuous-time
power balance constraint is the rate at which the objective functional is
changed due to an incremental variation in load δD(t) at time t, and is
continuous-time marginal price of energy generation and storage.

Optimality Conditions:

Pontryagin Minimum Principle (PMP)

Adjoint Equations

First Order Conditions

Complimentarity Slackness Conditions

Jump and Transversality Conditions
tt t

)(tD

)(tD

t
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Net Incremental Surplus of Stored Energy (NISSE )

Definition (Net Incremental Surplus of Stored Energy)

The adjoint function γs,Er (t) associated with the ES state equation
represents the net surplus of incremental change in the energy stored at
ES device r at time t, and is defined as the net incremental surplus of
stored energy (NISSE ).

NISSE is set at the start of charging and stay constant:

γs,Er (tc1
r )=

1

ηcr

(
∂US (Ds

r (t))

∂Ds
r (t)

∣∣
t=tc1

r
−λ(tc1

r )

)

NISSE stays constant during discharging unless ES is fully charged:

γs,Er (td1
r )=γs,Er (tc2

r )−
∫ td1

r

tc2
r

(
νs,Er (t)

)
dt
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Closed-form Price Formula when ES is Idle

Case 1: Generating units set the marginal price (ES is idle)

λ(t) =
∑

k∈(Ku
t ∪K r

t )

ICG
k (t)

∂Gk(t)

∂D(t)
+
∑
k∈K r

t

(
µ̇G
k

(t)− µ̇Gk (t)
) ∂Gk(t)

∂D(t)

The continuous-time marginal price provides a price signal that
reflects the impacts of continuous-time load variations on the
operating conditions of the system.

The continuous-time marginal price embeds the ramping limitations
of generating units in electricity prices.
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Closed-form Price Formula when ES is Charging

Case 2: Generating units and ES devices in charging state set the price

λ(t) =
∑

k∈(Ku
t ∪K r

t )

ICG
k (t)

∂Gk(t)

∂D(t)
+
∑
k∈K r

t

(
µ̇G
k

(t)− µ̇Gk (t)
) ∂Gk(t)

∂D(t)

−
∑

r∈(Ru
t ∪Rr

t )

IUS
r (t)

∂Ds
r (t)

∂D(t)
+
∑
r∈Rr

t

(
µ̇s,D
r

(t)− µ̇s,Dr (t)
) ∂Ds

r (t)

∂D(t)

IUS
r (t) is incremental charging

cost rate of ES device r :

IUS
r (t) ,

∂US (Ds
r (t))

∂Ds
r (t)

− ηcr γs,Er (tc1
r )

Load (M W )

Power (MW)

1 2 3 4 5

Discharging 
Effect 

Charging
Effect

0 1c
rt 2c

rt
1d

rt
2d

rt ft

t
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Closed-form Price Formula when ES is Discharging

Case 3: Generating units and ES devices in discharging state set the price

λ(t) =
∑

k∈(Ku
t ∪K r

t )

ICG
k (t)

∂Gk(t)

∂D(t)
+
∑
k∈K r

t

(
µ̇G
k

(t)− µ̇Gk (t)
) ∂Gk(t)

∂D(t)

+
∑

r∈(Ru
t ∪Rr

t )

ICS
r (t)

∂G s
r (t)

∂D(t)
+
∑
r∈Rr

t

(
µ̇s,G
r

(t)− µ̇s,Gr (t)
) ∂G s

r (t)

∂D(t)

ICS
r (t) is incremental discharging

cost rate of ES device r :

ICS
r (t) =

∂CS(G s(t))

∂G s(t)
− 1

ηdr
γs,Er (td1

r )

Load (M W )

Power (MW)

1 2 3 4 5

Discharging 
Effect 

Charging
Effect

0 1c
rt 2c
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Function Space Solution Paradigm
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Simulation Results: IEEE-RTS + CAISO Load

Study 1: System Operation without
ES

Study 2: System Operation with
Operator-owned ES

Study 3: Market-based System
Operation with ES Bidding in Market

Hourly Model Continuous-time Model

Study 1 - Operation Cost $459,746.20 $461,006.40

Hourly Model Continuous-time Model 

 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 

Study 2 449,246.7 10,499.5 450,041.3 10,965.1 

 

Hourly Continuous-time 

 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 
Case 3.1 456431 3316 457129 3877 

     

 

 

Hourly Model Continuous-time Model 

 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 
Operation 

Cost ($) 
Cost Saving Compared 

to Case 1 ($) 

Study 3 456,430.5 3,315.7 457,129.4 3,876.9 

 

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22 24

G
en

er
at

io
n 

S
ch

ed
ul

e 
(M

W
)

Oil197 Oil100 Coal76 Coal155 Coal350 Nuclear Hydro

(b)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16 18 20 22 24

G
en

er
at

io
n 

S
ch

ed
ul

e 
(M

W
)

Oil20 Oil197 Oil100 Coal76 Coal155 Coal350 Nuclear Hydro

(a)

c© 2018 M. Parvania, and the University of Utah Scheduling and Pricing of Energy Storage 13 / 20



Simulation Results: IEEE-RTS + CAISO Load

Study 2: System Operation with
Operator-owned ES
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Simulation Results: IEEE-RTS + CAISO Load
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Software Implementation: Metis
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Summary

Continuous-time UC model capture the continuous-time variations of
load and renewable resources, and tap the ramping flexibility of
generating units and energy storage devices

Continuous-time models define ramping trajectory as an explicit
decision variable and enable accurate ramping valuation in markets

Continuous-time UC model enables the definition of continuous-time
marginal electricity price, which embeds the impacts of ramping and
intertemporal ES operation in marginal price formation.

Coming soon: ES scheduling in real-time (energy and AS) markets
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